Source code for ltfatpy.gabor.gabdual

# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2018
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2018 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.0.16
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""Module of Canonical dual window calculation

Ported from ltfat_2.1.0/gabor/gabdual.m

.. moduleauthor:: Denis Arrivault
"""

from __future__ import print_function, division

import numpy as np

from ltfatpy.gabor.dgtlength import dgtlength
from ltfatpy.gabor.gabframediag import gabframediag
from ltfatpy.sigproc.fir2long import fir2long
from ltfatpy.sigproc.long2fir import long2fir
from ltfatpy.comp.comp_gabdual_long import comp_gabdual_long


[docs]def gabdual(g, a, M, L=None): """Canonical dual window of Gabor frame - Usage: | ``gd = gabdual(g, a, M)`` | ``gd = gabdual(g, a, M, L)`` - Input parameters: :param g: the gabor window. :param int a: the length of time shift. :param int M: the number of channels. :param int L: the length of window. (optional) :type g: numpy.ndarray or str or dict - Output parameters: :returns: the canonical dual window :rtype: numpy.ndarray ``gabdual(g, a, M)`` computes the canonical dual window of the discrete Gabor frame with window **g** and parameters **a**, **M**. The window **g** may be a vector of numerical values, a text string or a dictionary. If the length of **g** is equal to **M**, then the input window is assumed to be an FIR window. In this case, the canonical dual window also has length of **M**. Otherwise the smallest possible transform length is chosen as the window length. ``gabdual(g, a, M, L)`` returns a window that is the dual window for a system of length **L**. Unless the dual window is a FIR window, the dual window will have length **L**. If :math:`a > M` then the dual window of the Gabor Riesz sequence with window **g** and parameters **a** and **M** will be calculated. - Example: The following example shows the canonical dual window of the Gaussian window. >>> import matplotlib.pyplot as plt >>> from ltfatpy import pgauss, gabdual >>> a = 20 >>> M = 30 >>> L = 300 >>> g = pgauss(L, a*M/L)[0] >>> gd = gabdual(g, a, M) >>> # Plot in the time-domain >>> _ = plt.plot(gd) >>> plt.show() .. image:: images/gabdual.png :width: 700px :alt: pgauss gabdual image :align: center .. seealso:: :func:`~ltfatpy.gabor.gabtight.gabtight`, :func:`~ltfatpy.gabor.gabwin.gabwin`, :func:`~ltfatpy.sigproc.fir2long.fir2long`, :func:`~ltfatpy.gabor.dgt.dgt` """ # Verify a, M and L if L is None: if isinstance(g, np.ndarray): Ls = g.shape[0] else: Ls = 1 L = dgtlength(Ls, a, M) else: Luser = dgtlength(L, a, M) if L != Luser: raise ValueError(("Incorrect transform length L={0:d} specified" + " for a = {1:d} and M = {2:d}." + " Next valid length is L={3:d}. See the help" + " of DGTLENGTH for the requirements."). format(L, a, M, Luser)) # Determine the window (g, info) = _call_gabwin(g, a, M, L) if L < info['gl']: raise ValueError('Window is too long.') R = 1 if (g.ndim > 1): R = g.shape[1] # Are we in the Riesz sequence of in the frame case scale = 1 if a > M*R: # Handle the Riesz basis (dual lattice) case. # Swap a and M, and scale differently. scale = a / M a, M = M, a # Compute # Rectangular case if info['gl'] <= M and R == 1: # Diagonal of the frame operator d = gabframediag(g, a, M, L) gd = g / long2fir(g=d, L=info['gl']) else: # Long window case # Just in case, otherwise the call is harmless. g = fir2long(g, L) gd = comp_gabdual_long(g, a, M)*scale # post process result if np.issubdtype(g.dtype, np.floating): # If g is real then the output is known to be real. gd = gd.real return gd
def _call_gabwin(g, a, M, L): from ltfatpy.gabor.gabwin import gabwin return gabwin(g, a, M, L) if __name__ == '__main__': # pragma: no cover import doctest doctest.testmod()