Source code for ltfatpy.sigproc.normalize

# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2018
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2018 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.0.16
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


""" Module of signal normalization

Ported from ltfat_2.1.0/sigproc/normalize.m

.. moduleauthor:: Denis Arrivault
"""

from __future__ import print_function, division

import numpy as np
from numpy import linalg as LA

from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre
from ltfatpy.comp.assert_sigreshape_post import assert_sigreshape_post
from ltfatpy.sigproc.rms import rms
from ltfatpy.gabor.s0norm import s0norm


[docs]def normalize(f, norm='2', dim=None): """Normalize input signal by specified norm - Usage: | ``(f, fnorm) = normalize(f)`` | ``(f, fnorm) = normalize(f, 'area')`` | ``(f, fnorm) = normalize(f, dim=2)`` | ... :param numpy.ndarray f: Input signal :param str norm: Name of the norm to apply :param int dim: Dimension along which norm is applied (first non-singleton dimension as default) - Output parameters: :return: ``(f, fnorm)`` :rtype: tuple :var numpy.ndarray f: normalized signal :var numpy.ndarray fnorm: norm of the signal ``normalize(f,...)`` will normalize the signal **f** by the specified norm. The norm is specified as a string and may be one of: ============ ========================================================== ``'1'`` Normalize the :math:`l^1` norm to be *1*. ``'area'`` Normalize the area of the signal to be *1*. This is exactly the same as ``'1'``. ``'2'`` Normalize the :math:`l^2` norm to be *1*. This is the default ``'energy'`` Normalize the energy of the signal to be *1*. This is exactly the same as ``'2'``. ``'inf'`` Normalize the :math:`l^{\inf}` norm to be *1*. ``'peak'`` Normalize the peak value of the signal to be *1*. This is exactly the same as ``'inf'``. ``'rms'`` Normalize the Root Mean Square (RMS) norm of the signal to be *1*. ``'s0'`` Normalize the S0-norm to be *1*. ``'wav'`` Normalize to the :math:`l^{\inf}` norm to be *0.99* to avoid possible clipping introduced by the quantization procedure when saving as a wav file. This only works with floating point data types. ``'null'`` Do NOT normalize, output is identical to input. ============ ========================================================== .. seealso:: :func:`~ltfatpy.sigproc.rms.rms`, :func:`~ltfatpy.gabor.s0norm.s0norm` """ if not isinstance(norm, str): raise TypeError('norm should be string.') norm = norm.lower() f = f.copy() (f, _unused, _unused, W, dim, permutedshape, order) = \ assert_sigreshape_pre(f, dim=dim) if np.issubdtype(f.dtype, np.integer) and norm == 'wav': raise TypeError('Integer data types are unsupported for wav norm.') fnorm = np.zeros((W, )) for ii in range(W): if norm == '1' or norm == 'area': fnorm[ii] = LA.norm(f[:, ii], 1) f[:, ii] = f[:, ii] / fnorm[ii] elif norm == '2' or norm == 'energy': fnorm[ii] = LA.norm(f[:, ii], 2) f[:, ii] = f[:, ii] / fnorm[ii] elif norm == 'inf' or norm == 'peak': fnorm[ii] = LA.norm(f[:, ii], np.inf) f[:, ii] = f[:, ii] / fnorm[ii] elif norm == 'rms': fnorm[ii] = rms(f[:, ii]) f[:, ii] = f[:, ii] / fnorm[ii] elif norm == 's0': fnorm[ii] = s0norm(f[:, ii]) f[:, ii] = f[:, ii] / fnorm[ii] elif norm == 'wav': if np.issubdtype(f.dtype, np.floating): fnorm[ii] = LA.norm(f[:, ii], np.inf) f[:, ii] = 0.99 * f[:, ii] / fnorm[ii] else: raise TypeError("TO DO: Normalizing integer data types not" "supported yet.") f = assert_sigreshape_post(f, dim, permutedshape, order) return (f, fnorm)