Source code for ltfatpy.sigproc.rms

# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2018
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2018 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.0.16
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


""" Module of Root Mean Square calculation

Ported from ltfat_2.1.0/sigproc/rms.m

.. moduleauthor:: Denis Arrivault
"""

from __future__ import print_function, division

import numpy as np
from numpy import linalg as LA

from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre
from ltfatpy.comp.assert_sigreshape_post import assert_sigreshape_post


[docs]def rms(f, ac=False, dim=None): """RMS value of signal - Usage: | ``y = rms(f)`` - Input parameters: :param numpy.ndarray f: Input signal :param bool ac: ``True`` if calculation should only consider the AC component of the signal (i.e. the mean is removed). ``False`` by default. :param int dim: Dimension along which norm is applied (first non-singleton dimension as default) - Output parameters: :returns: RMS value :rtype: float ``rms(f)`` computes the RMS (Root Mean Square) value of a finite sampled signal sampled at a uniform sampling rate. This is a vector norm equal to the :math:`l^2` averaged by the length of the signal. If the input is a matrix or ND-array, the RMS is computed along the first (non-singleton) dimension, and a vector of values is returned. The RMS value of a signal ``f`` of length ``N`` is computed by .. N rms(f) = 1/sqrt(N) ( sum |f(n)|^2 )^(1/2) n=1 .. math:: rms(f) = \\frac{1}{\sqrt N} \left( \sum_{n=1}^N |f(n)|^2 \\right)^{\\frac{1}{2}} """ # It is better to use 'norm' instead of explicitly summing the squares, as # norm (hopefully) attempts to avoid numerical overflow. (f, L, _unused, W, dim, permutedsize, order) = \ assert_sigreshape_pre(f, dim=dim) permutedshape = (1,) + permutedsize[1:] y = np.zeros(permutedshape) if W == 1: if ac: y[0] = LA.norm(f[:, 0] - np.mean(f[:, 0])) / np.sqrt(L) else: y[0] = LA.norm(f[:, 0]) / np.sqrt(L) else: if ac: for ii in range(W): y[0, ii] = LA.norm(f[:, ii] - np.mean(f[:, ii])) / np.sqrt(L) else: for ii in range(W): y[0, ii] = LA.norm(f[:, ii]) / np.sqrt(L) y = assert_sigreshape_post(y, dim, permutedshape, order) return y