scikit-multimodallearn
0.0.0

Contents:

  • Installation and development
  • Multimodal Examples
  • Computation times
  • API Documentation
  • Credits
scikit-multimodallearn
  • »
  • Welcome to scikit-multimodallearn’s documentation!
  • View page source

Welcome to scikit-multimodallearn’s documentation!

scikit-multimodallearn is a Python package implementing boost and kernel algorithms for machine learning with multimodal data.

It is compatible with scikit-learn, a popular package for machine learning in Python.

Documentation

Release:0.0.0
Date:Jun 06, 2022

Contents:

  • Installation and development
    • Dependencies
    • Installation
    • Development
    • Source code
    • Testing
    • Generating the documentation
  • Multimodal Examples
    • MuCuMBo Examples
    • MuMBo Examples
    • MVML Examples
    • Use Case Examples on Digit
  • Computation times
    • Mumbo computation times
    • MVML computation times
    • Computation times
  • API Documentation
    • datasets
    • Boosting
      • multimodal.boosting.mumbo
      • multimodal.boosting.combo
      • multimodal.boosting.boost
    • Kernels
      • multimodal.kernels.mvml
      • multimodal.kernels.lpMKL
      • multimodal.kernels.mkernel
  • Credits
    • References
    • Copyright
    • License

Indices and tables

  • Index
  • Module Index
  • Search Page
Next

© Copyright 2020-2022, LIS UMR 7020.

Built with Sphinx using a theme provided by Read the Docs.