Note
Click here to download the full example code
Use Case MuComBo on digit
Use case for all classifier of multimodallearn MuComBo
- multi class digit from sklearn, multivue
vue 0 digit data (color of sklearn)
vue 1 gradiant of image in first direction
vue 2 gradiant of image in second direction

Out:
/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_base.py:166: FutureWarning: `base_estimator` was renamed to `estimator` in version 1.2 and will be removed in 1.4.
warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/utils/deprecation.py:101: FutureWarning: Attribute `base_estimator_` was deprecated in version 1.2 and will be removed in 1.4. Use `estimator_` instead.
warnings.warn(msg, category=FutureWarning)
result of MuComboClassifier on digit
90.0
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from multimodal.datasets.base import load_dict, save_dict
from multimodal.tests.data.get_dataset_path import get_dataset_path
from multimodal.datasets.data_sample import MultiModalArray
from multimodal.boosting.combo import MuComboClassifier
import numpy as np
import matplotlib.pyplot as plt
import matplotlib._color_data as mcd
def plot_subplot(X, Y, Y_pred, vue, subplot, title):
cn = mcd.CSS4_COLORS
classes = np.unique(Y)
n_classes = len(np.unique(Y))
axs = plt.subplot(subplot[0],subplot[1],subplot[2])
axs.set_title(title)
#plt.scatter(X._extract_view(vue), X._extract_view(vue), s=40, c='gray',
# edgecolors=(0, 0, 0))
for index, k in zip(range(n_classes), cn.keys()):
Y_class, = np.where(Y==classes[index])
Y_class_pred = np.intersect1d(np.where(Y_pred==classes[index])[0], np.where(Y_pred==Y)[0])
plt.scatter(X._extract_view(vue)[Y_class],
X._extract_view(vue)[Y_class],
s=40, c=cn[k], edgecolors='blue', linewidths=2, label="class real class: "+str(index)) #
plt.scatter(X._extract_view(vue)[Y_class_pred],
X._extract_view(vue)[Y_class_pred],
s=160, edgecolors='orange', linewidths=2, label="class prediction: "+str(index))
if __name__ == '__main__':
# file = get_dataset_path("digit_histogram.npy")
file = get_dataset_path("digit_col_grad.npy")
y = np.load(get_dataset_path("digit_y.npy"))
base_estimator = DecisionTreeClassifier(max_depth=4)
dic_digit = load_dict(file)
XX =MultiModalArray(dic_digit)
X_train, X_test, y_train, y_test = train_test_split(XX, y)
est3 = MuComboClassifier(base_estimator=base_estimator).fit(X_train, y_train)
y_pred3 = est3.predict(X_test)
y_pred33 = est3.predict(X_train)
print("result of MuComboClassifier on digit ")
result3 = np.mean(y_pred3.ravel() == y_test.ravel()) * 100
print(result3)
fig = plt.figure(figsize=(12., 11.))
fig.suptitle("MuCombo: result" + str(result3), fontsize=16)
plot_subplot(X_train, y_train, y_pred33 ,0, (4, 1, 1), "train vue 0 color" )
plot_subplot(X_test, y_test,y_pred3 , 0, (4, 1, 2), "test vue 0 color" )
plot_subplot(X_test, y_test, y_pred3,1, (4, 1, 3), "test vue 1 gradiant 0" )
plot_subplot(X_test, y_test,y_pred3, 2, (4, 1, 4), "test vue 2 gradiant 1" )
# plt.legend()
plt.show()
Total running time of the script: ( 0 minutes 4.299 seconds)